ÿØÿà JFIF    ÿÛ „  ( %"1!%)+...383,7(-.+  -+++--++++---+-+-----+---------------+---+-++7-----ÿÀ  ß â" ÿÄ     ÿÄ H    !1AQaq"‘¡2B±ÁÑð#R“Ò Tbr‚²á3csƒ’ÂñDS¢³$CÿÄ   ÿÄ %  !1AQa"23‘ÿÚ   ? ôÿ ¨pŸªáÿ —åYõõ\?àÒü©ŠÄï¨pŸªáÿ —åYõõ\?àÓü©ŠÄá 0Ÿªáÿ Ÿå[úƒ ú®ði~TÁbqÐ8OÕpÿ ƒOò¤Oè`–RÂáœá™êi€ßÉ< FtŸI“öÌ8úDf´°å}“¾œ6  öFá°y¥jñÇh†ˆ¢ã/ÃÐ:ªcÈ "Y¡ðÑl>ÿ ”ÏËte:qž\oäŠe÷󲍷˜HT4&ÿ ÓÐü6ö®¿øþßèô Ÿ•7Ñi’•j|“ñì>b…þS?*Óôÿ ÓÐü*h¥£ír¶ü UãS炟[AÐaè[ûª•õ&õj?†Éö+EzP—WeÒírJFt ‘BŒ†Ï‡%#tE Øz ¥OÛ«!1›üä±Í™%ºÍãö]°î(–:@<‹ŒÊö×òÆt¦ãº+‡¦%ÌÁ²h´OƒJŒtMÜ>ÀÜÊw3Y´•牋4ǍýʏTì>œú=Íwhyë,¾Ôò×õ¿ßÊa»«þˆѪQ|%6ž™A õ%:øj<>É—ÿ Å_ˆCbõ¥š±ý¯Ýƒï…¶|RëócÍf溪“t.СøTÿ *Ä¿-{†çàczůŽ_–^XþŒ±miB[X±d 1,é”zEù»& î9gœf™9Ð'.;—™i}!ôšåîqêÛ٤ёý£½ÆA–àôe"A$˝Úsäÿ ÷Û #°xŸëí(l »ý3—¥5m! rt`†0~'j2(]S¦¦kv,ÚÇ l¦øJA£Šƒ J3E8ÙiŽ:cÉžúeZ°€¯\®kÖ(79«Ž:¯X”¾³Š&¡* ….‰Ž(ÜíŸ2¥ª‡×Hi²TF¤ò[¨íÈRëÉ䢍mgÑ.Ÿ<öäS0í„ǹÁU´f#Vß;Õ–…P@3ío<ä-±»Ž.L|kªÀê›fÂ6@»eu‚|ÓaÞÆŸ…¨ááå>åŠ?cKü6ùTÍÆ”†sĤÚ;H2RÚ†õ\Ö·Ÿn'¾ ñ#ºI¤Å´%çÁ­‚â7›‹qT3Iï¨ÖÚ5I7Ë!ÅOóŸ¶øÝñØôת¦$Tcö‘[«Ö³šÒ';Aþ ¸èíg A2Z"i¸vdÄ÷.iõ®§)¿]¤À†–‡É&ä{V¶iŽ”.Ó×Õÿ û?h¬Mt–íª[ÿ Ñÿ ÌV(í}=ibÔ¡›¥¢±b Lô¥‡piη_Z<‡z§èŒ)iÖwiÇ 2hÙ3·=’d÷8éŽ1¦¸c¤µ€7›7Ø ð\á)} ¹fËí›pAÃL%âc2 í§æQz¿;T8sæ°qø)QFMð‰XŒÂ±N¢aF¨…8¯!U  Z©RÊ ÖPVÄÀÍin™Ì-GˆªÅËŠ›•zË}º±ŽÍFò¹}Uw×#ä5B¤{î}Ð<ÙD é©¤&‡ïDbàÁôMÁ." ¤‡ú*õ'VŽ|¼´Úgllº¼klz[Æüï÷Aób‡Eÿ dÑ»Xx9ÃÜ£ÁT/`¼¸vI±Ýµ·Ë‚“G³þ*Ÿû´r|*}<¨îºœ @¦mÄ’M¹”.œ«Y–|6ÏU¤jç¥ÕÞqO ˜kDÆÁ¨5ÿ š;ÐЦ¦€GÙk \ –Þ=â¼=SͧµªS°ÚÍpÜãQűÀõ¬?ÃÁ1Ñ•õZà?hóœ€ L¦l{Y*K˜Ù›zc˜–ˆâ ø+¾ ­-Ök¥%ùEÜA'}ˆ><ÊIè“bpÍ/qÞâvoX€w,\úªò6Z[XdÒæ­@Ö—€$òJí#é>'°Ú ôª˜<)4ryÙ£|óAÅn5žêŸyÒäMÝ2{"}‰–¤l÷ûWX\l¾Á¸góÉOÔ /óñB¤f¸çñ[.P˜ZsÊË*ßT܈§QN¢’¡¨§V¼(Üù*eÕ“”5T¨‹Âê¥FŒã½Dü[8'Ò¥a…Ú¶k7a *•›¼'Ò·\8¨ª\@\õ¢¦íq+DÙrmÎ…_ªæ»ŠÓœ¡¯’Ré9MÅ×D™lælffc+ŒÑ,ý™ÿ ¯þǤ=Å’Á7µ÷ÚÛ/“Ü€ñýã¼àí¾ÕÑ+ƒ,uµMâÀÄbm:ÒÎPæ{˜Gz[ƒ¯«® KHà`ߨŠéí¯P8Aq.C‰ à€kòpj´kN¶qô€…Õ,ÜNŠª-­{Zö’æû44‰sŽè‰îVíRœÕm" 6?³D9¡ÇTíÅꋇ`4«¸ÝÁô ï’ýorqКÇZ«x4Žâéþuïf¹µö[P ,Q£éaX±`PÉÍZ ¸äYúg üAx ’6Lê‚xÝÓ*äQ  Ï’¨hÍ =²,6ï#rÃ<¯–£»ƒ‹,–ê•€ aÛsñ'%Æ"®ÛüìBᝠHÚ3ß°©$“XnœÖ’î2ËTeûìxîß ¦å¿çÉ ðK§þ{‘t‚Ϋ¬jéîZ[ ”š7L¥4VÚCE×]m¤Øy”ä4-dz£œ§¸x.*ãÊÊ b÷•h:©‡¦s`BTÁRû¾g⻩‹jø sF¢àJøFl‘È•Xᓁà~*j¯ +(ÚÕ6-£¯÷GŠØy‚<Ç’.F‹Hœw(+)ÜÜâÈzÄäT§FߘãÏ;DmVœ3Àu@mÚüXÝü•3B¨òÌÁÛ<·ÃÜ z,Ì@õÅ·d2]ü8s÷IôÞ¯^Ç9¢u„~ëAŸï4«M? K]­ÅàPl@s_ p:°¬ZR”´›JC[CS.h‹ƒïËœ«Æ]–÷ó‚wR×k7X‰k›‘´ù¦=¡«‰¨¨Â')—71ó’c‡Ðúµ `é.{§p¹ój\Ž{1h{o±Ý=áUÊïGÖŒõ–-BÄm+AZX¶¡ ïHðæ¥JmÙ;…䡟ˆ¦ ° äšiÉg«$üMk5¤L“’çÊvïâï ,=f“"íἊ5ô¬x6{ɏžID0e¸vçmi'︧ºð9$ò¹÷*£’9ÿ ²TÔ…×>JV¥}Œ}$p[bÔ®*[jzS*8 ”·T›Í–ñUîƒwo$áè=LT™ç—~ô·¤ÈÚ$榍q‰„+´kFm)ž‹©i–ËqÞŠ‰à¶ü( ‚•§ •°ò·‡#5ª•µÊ﯅¡X¨šÁ*F#TXJÊ ušJVÍ&=iÄs1‚3•'fý§5Ñ<=[íÞ­ PÚ;ѱÌ_~Ä££8rÞ ²w;’hDT°>ÈG¬8Á²ÚzŽ®ò®qZcqJêäÞ-ö[ܘbň±çb“ж31²n×iƒðÕ;1¶þÉ ªX‰,ßqÏ$>•î íZ¥Z 1{ç൵+ƒÕµ¥°T$§K]á»Ûï*·¤tMI’ÂZbŽÕiÒ˜}bÓ0£ª5›¨ [5Ž^ÝœWøÂÝh° ¢OWun£¤5 a2Z.G2³YL]jåtì”ä ÁÓ‘%"©<Ôúʰsº UZvä‡ÄiÆÒM .÷V·™ø#kèýiíÌ–ª)µT[)BˆõÑ xB¾B€ÖT¨.¥~ð@VĶr#¸ü*åZNDŽH;âi ],©£öØpù(šºãö¼T.uCê•4@ÿ GÕÛ)Cx›®0ø#:ÏðFÒbR\(€€Ä®fã4Þ‰Fä¯HXƒÅ,†öEÑÔÜ]Öv²?tLÃvBY£ú6Êu5ÅAQ³1‘’¬x–HŒÐ‡ ^ ¸KwJôÖŽ5×CÚ¨vÜ«/B0$×k°=ðbÇ(Ï)w±A†Á† 11Í=èQšµ626ŒÜ/`G«µ<}—-Ö7KEHÈÉðóȤmݱû±·ø«Snmá=“䫚mݱŸ¡¶~ó·“äUóJæúòB|E LêŽy´jDÔ$G¢þÐñ7óR8ýÒ…Ç› WVe#·Ÿ p·Fx~•ݤF÷0Èÿ K¯æS<6’¡WШ; ´ÿ ¥Êø\Òuî†åÝ–VNœkÒ7oòX¨Á­Ø÷FÎÑä±g÷ÿ M~Çî=p,X´ ÝÌÚÅ‹’ÃjÖ.ØöÏñ qïQ¤ÓZE†° =6·]܈ s¸>v•Ž^Ý\wq9r‰Î\¸¡kURÒ$­*‹Nq?Þª*!sŠÆ:TU_u±T+øX¡ ®¹¡,ÄâÃBTsÜ$Ø›4m椴zÜK]’’›Pƒ @€#â˜`é¹=I‡fiV•Ôî“nRm+µFPOhÍ0B£ €+¬5c v•:P'ÒyÎ ‰V~‚Ó†ÖuókDoh$å\*ö%Ю=£«…aȼ½÷Û.-½VŒŠ¼'lyî±1¬3ó#ÞE¿ÔS¤gV£m›=§\û"—WU¤ÚǼÿ ÂnÁGŒÃ ‚õN D³õNÚíŒÕ;HôyÄÈ©P¹Ä{:?R‘Ô¨âF÷ø£bÅó® JS|‚R÷ivýáâ€Æé¡è³´IئÑT!§˜•ت‚¬â@q€wnïCWÄ@JU€ê¯m6]Ï:£âx'+ÒðXvÓ¦Úm=–´7œ $ì“B£~p%ÕŸUþ« N@¼üï~w˜ñø5®—'Ôe»¤5ã//€ž~‰Tþ›Å7•#¤× Íö pÄ$ùeåì*«ÓŠEØWEÈsßg ¦ûvžSsLpºÊW–âµEWöˬH; ™!CYõZ ÃÄf æ#1W. \uWâ\,\Çf j’<qTbên›Î[vxx£ë 'ö¨1›˜ÀM¼Pÿ H)ƒêêŒA7s,|F“ 꺸k³9Ìö*ç®;Ö!Ö$Eiž•¹ÒÚ†ýóéÝû¾ÕS®ó$’NÝäŸz¤5r¦ãÄÃD÷Üø!°ø‡Ô&@m™Ì^Ãä­d q5Lnÿ N;.6½·N|#ä"1Nƒx“ã<3('&ñßt  ~ªu”1Tb㫨9ê–›–bìd$ߣ=#ÕãÒmU¯eí$EFù5ýYô櫨æì™Ç—±ssM]·á¿0ÕåJRÓªîiƒ+O58ÖñªŠÒx" \µâá¨i’¤i —Ö ” M+M¤ë9‚‰A¦°Qõ¾ßøK~¼Ã‘g…Ö´~÷Ï[3GUœÒ½#…kàÔ®Ò”‰³·dWV‰IP‰Ú8u¹”E ÖqLj¾êÕCBš{A^Âß;–¨`¯¬ìö ˼ ×tìø.tƐm*n¨y4o&Àx¥n¦×î‡aupáÛj8¿m›è¶ã!o½;ß0y^ý×^EÑ¿ÒjzŒ­)vÚÑnÄL …^ªô× ‡—‚3k Îý­hï]içå–îÏ*÷ñþ»Ô CÒjøjÍznˆ´ ¹#b'Fô‹ ‰v¥'’à'T´ƒHýÍ%M‰ ƒ&ÆÇŒï1 ‘ –Þ ‰i¬s žR-Ÿ kЬá¬7:þ 0ŒÅÒÕ/aÙ¬ÃÝ#Úøœ ©aiVc‰. ¹¦ãµ” ›Yg¦›ÆÎýº°f³7ƒhá·¸­}&D9¡ÂsÉÙÞèŠõØàC™¨ñbFC|´Ü(ŸƒÚÒ-%»'a Ì¿)ËÇn¿úÿ ÞŽX…4ÊÅH^ôΑí@ù¹Eh¶“L8Çjù ¼ÎåVªóR©Ï5uà V4lZß®=€xÖŸ–ÑÈ ÷”¨°¾__yM1tÉ?uÆþIkÄgæ@þ[¢†°XÃJ£j·:nkÅ¢u ‘}âGzö­/IµèЬ¼48q¦F°ŽR¼=ûì{´¯RýicS ÕÛ íNtÍÙï£,w4rêì®»~x(©Uñ§#Ñ&œÕ¤>ÎåÍÓ9’Ö{9eV­[Öjâ²ãu]˜å2›qÑšÕJç0€sÄ|Êëè0튔bÁ>“{×_F`Ø©ºê:µä,v¤ðfc1±"«ÔÍän1#=· Âøv~H½ÐßA¾¿Ü€Óš]Õ; I¾÷ç‚Qi†î¹9ywÔKG˜áñ zQY—§ÃÕZ07§X‚ Áh;ÁM)iÌCH-¯T‘ë|A0{Ò½LÚ–TâÖkÜ’dÀ“rmm»”جPF³ÖcbE§T€ÒxKºû’Ó®7±²(\4ŽÃ¸Uu@j™yĵ;³µ!Á¢b.W¤=mõ´êµK k ¸K^ÜÛ#p*Ü14qkZç5ïë †°5Ï%ÍÛ<Õ¤×Ô¥ê†C Õ´¼ú$ƒÖ“”]Ù¬qÞÚ[4©ý!ûÏ—Áb쳐XµA¬â~`›Çr¸8ìùÝ䫦<>ä÷«?xs´ÇÑ /á;¹øüÊÈÙà{"@Žïzâ¬[âß‚ U_<ÇŸ½4èN˜ú61®qŠu ¦þF£»äJ_ˆÙÎ~ ÞAã–݄ϗrŠD;xTž‘ô`É«…suãO`?³à™ô Lý#Íc5öoæØ‚y´´÷«ZR§<&JÇ+éâô´€i!Àˆ0æAoàðLèÖ-2ŸõW.’t^–(KÁmHµV@xÜÇy®Ñø­â^:Ú3w· 7½¹°ñ¸â¹®:',«Mœ—n­Á+Ãbš LÈ‘ÄnRÓÅœ%¦²‰¨ùQ:¤f‚ "PÕtô¸…cæl…&˜Ú˜Ôkv‹ž+vŠ,=¢v­6—Xy*¥t£«<™:“aîϲ=¦6rO]XI¿Œ÷¤zÚ­›¶ 6÷”w\d ü~v®ˆÌk«^m<ÿ ¢‰Õ\)ùºŽ;… lîÙÅEŠ®cѾ@vnMÏ,¼“ñ•ŽBxðÃzãÇç%3ˆ"}Ù•Åî> BÉú;Ò]V+P˜F_´ßé> Øše|ï‡ÄOmFæÇ ãqÞ$/xÐx­z`ï9"œÜij‚!7.\Td…9M‡•iŽ‹¾‘50ÞŽn¥ß4ÉôO ¹*í^QêËÜÇÌ8=ާs‰'ÂëÙ«á%Pú[O †ÅP¯Vsް.‰,kc¶ ¬A9n˜XÎ-ÞšN["¹QÕ‰ƒMýÁߺXJæÍaLj¾×Ãmã¾ãÚ uñÒþåQô¦¥ /ÄUx:‚ÍÜ’ Đ©ØÝ3V¨‰ÕnÐ6ó*óúK­«…c ¯U òhsý­jóÔj#,ímŒRµ«lbïUTŒÑ8†Ä0œÏr`ð¡¬É Ї ë"À² ™ 6¥ f¶ ¢ÚoܱԷ-<Àî)†a¶ž'Ú»¨TXqØæ¶÷YÄHy˜9ÈIW­YÀuMFë ºÏ’AqÌ4·/Ú †ô'i$øä­=Ä Ý|öK×40è|È6p‘0§)o¥ctî§H+CA-“ xØ|ÐXАç l8íºð3Ø:³¤¬KX¯UÿÙ ELF>@@@8 @tt@@,-888$$Ptdp<p<p< QtdRtdGNUcB^cvIVeܝG~ "U > s % m8  ,F!L  j  "i       [k ==i cs \ t% ]Ts d  b   A A`,  7T  ~ 1} u   Y48,O  Lr.J] , 4  4g rt( # y    NE RB < `R!q   G. S  , ,   z e   @  F"' D ) ` [ Ј__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizelibmpdec.so.2libpthread.so.0libc.so.6strcmpPyExc_RuntimeErrorPyErr_FormatPyArg_ParseTuplempd_same_quantum_Py_FalseStruct_Py_TrueStruct_Py_Deallocmpd_qshiftmpd_qscalebmpd_qrotatempd_qxormpd_qormpd_qandmpd_qcopy_signmpd_compare_total_magPyType_IsSubtypePyExc_TypeErrorPyErr_SetStringmpd_compare_totalmpd_to_eng_sizempd_freePyErr_NoMemorympd_to_sci_sizePyUnicode_Newmemcpympd_classPyUnicode_FromStringmpd_qinvertmpd_qlogbmpd_qcopy_negatempd_qcopy_absmpd_iscanonicalmpd_iszerompd_issnanmpd_issignedmpd_isqnanmpd_isnanmpd_isinfinitempd_isfinitempd_issubnormalmpd_isnormal_PyObject_Newmpd_qfmaPyList_NewPyErr_SetObjectPyList_Append_Py_NoneStructPyArg_ParseTupleAndKeywordsmpd_qpowmpd_qpowmodPy_BuildValuempd_qdivmodmpd_qsubmpd_qrem_nearmpd_qremmpd_qquantizempd_qnext_towardmpd_qmulmpd_qmin_magmpd_qminmpd_qmax_magmpd_qmaxmpd_qdivintmpd_qdivmpd_qcompare_signalmpd_qcomparempd_qaddmpd_qsqrtmpd_qround_to_intxmpd_qround_to_intmpd_qreducempd_qplusmpd_qnext_plusmpd_qnext_minusmpd_qminusmpd_qlog10mpd_qlnmpd_qexpmpd_qabsmpd_set_flagsmpd_setdigitsmpd_isdynamic_dataPyLong_FromSsize_tPyContextVar_Getmpd_isspecialmpd_maxcontextmpd_qnewmpd_qsset_ssizempd_qcopympd_set_positivempd_qget_ssizempd_ispositivempd_delmpd_arith_signPyFloat_AsDoublePyComplex_FromDoublesPyErr_Occurred_Py_NotImplementedStructmpd_qcmpPyBool_FromLongPyFloat_TypePyComplex_TypePyObject_IsInstancePyObject_GetAttrStringmpd_qncopyPyComplex_AsCComplexPyFloat_FromDoublePyExc_ValueErrormpd_qsetroundmpd_adjexpmpd_qfinalizePyExc_KeyErrorPyInit__decimalmpd_reallocfuncPyMem_Reallocmpd_traphandlerPyMem_Mallocmpd_callocfunc_emPyMem_Freempd_mallocfuncmpd_callocfuncmpd_setminallocPyContextVar_NewPyLong_TypePyBaseObject_TypePyType_ReadyPyDict_SetItemStringPyImport_ImportModulePyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectPyExc_ArithmeticErrorPyErr_NewExceptionPyTuple_NewPyTuple_PackPyExc_ZeroDivisionErrorPyObject_CallObjectmpd_round_stringPyUnicode_InternFromStringPyModule_AddStringConstantmpd_versionPyModule_AddIntConstantPyObject_HashNotImplementedPyObject_GenericGetAttrPyType_GenericNewPyObject_FreePyTuple_TypePyLong_FromLongmpd_signPyLong_FromUnsignedLongPyObject_CallFunctionObjArgsmpd_clear_flagsmpd_to_sciPyLong_AsSsize_tmbstowcsPyUnicode_FromWideCharPyUnicode_AsUTF8StringPyUnicode_FromFormatPyList_AsTuplePyTuple_SizePyLong_AsLongsnprintf__snprintf_chkPyUnicode_CompareWithASCIIString__strcat_chkPyContextVar_Setmpd_lsnprint_signalsmpd_qsetclampmpd_qsetemaxmpd_qseteminmpd_qsetprecmpd_etopmpd_etinympd_getroundmpd_getclampmpd_geteminmpd_getemaxmpd_getprecPyDict_NewPyDict_SetItemPyObject_IsTruePyDict_SizePyDict_GetItemWithErrormpd_qsetstatusmpd_qsettrapsPyUnicode_ComparePyList_SizePyList_GetItemPyObject_GenericSetAttrPyExc_AttributeErrorPyErr_Clearmpd_qexport_u32_PyLong_Newmpd_isnegativePyExc_OverflowErrormpd_qset_stringmpd_qimport_u32_PyUnicode_Ready_PyUnicode_IsWhitespace_PyUnicode_ToDecimalDigit_Py_ascii_whitespacempd_setspecialmpd_qset_ssizempd_seterrormpd_qset_uintmpd_set_signPyUnicode_AsUTF8AndSizempd_parse_fmt_strmpd_qformat_specPyUnicode_DecodeUTF8PyDict_GetItemStringmpd_validate_lconv_PyLong_GCDPyFloat_FromString__stack_chk_failGLIBC_2.14GLIBC_2.4GLIBC_2.2.5GLIBC_2.3.4s ii  ui  ti  ``i0@ t(8@H`X.)ȦЦpP@HPPhp0x pȧ`P``:hx pȨЃب@0` (8@HX`hPx p@ȩة' ,` 0(8 @8HX`GhxN Y~Ȫت`` h(8@@pHX`yhxp@PȫPث00 (`8@HpX`hPx@gȬkج@jj (l8 @HiX`hix`phk&ȭgح@.@gc 5(`f8@>H`X``KhexWd\@d`kȮcخxP@ (08@H`X``hbx ``ȯ`د`` (a8@@H`X`hPx`p#Ȱp.0(@ =(8`Wh0a\`10 (8/@HX/`hx . ,^+Ȳ@ز*^@)'@( 0(8'@8HpX'`hx`&`%P %hȳس$y@#  (08@HpX`hgxpkjȴpjشi h (`i8 @&HPhX`h}x`|a@ȵ aصjPa@P 5(f8@KHfX`Whzx\{@kz ȶ@yض@ 0x@ w@ (u8`@HtX`hpsxrpȷPoط@m`l@ L(<8 @tHX`9hGx@a}@aȸ#} (@@H`hD    (`<p@QȺ0к@|4|4 |40|4@|4P|4`h|4|4|4Ȼ|4|4|4 (|4@H|4`h|4|4|4ȼм@ H`&h?7ZRtȽl  (@H`hȾh5p`ؿn0px.0HE0X0#`@(@8UO(OP@2h`Q@HPX`hpx        50!8|4PX|4px|4|4|4|4|4|4|4|4|4 (|4@H|4`h|4|4|4|4|45|4 -(40?8D@IHJPOXh`nhopqxty}ȟП؟8EPxx0xF@RR (08@HPX ` h p x ȠРؠ !"#$%& '((0)8*@+H,P.X/`0h1p2x56789:;<=>ȡ@СAءBCGHKLMNP Q(R0S8T@UHVPWXX`YhZp[x\]^_`abcdeȢfТgآijklmprsu v(w0x8z@{H|P~X`hpxȣУأ (08@HPX`hpxȤФؤ (08@HPX`hpxȥХإHHiHtH5%@%h%h%h%h%h%h%h%hp%h`%h P%h @%h 0%h %zh %rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%hP%h@% h0%h %h%h%h%h %h!%h"%h#%h$%h%%h&%h'p%h(`%h)P%h*@%h+0%h, %zh-%rh.%jh/%bh0%Zh1%Rh2%Jh3%Bh4%:h5%2h6%*h7p%"h8`%h9P%h:@% h;0%h< %h=%h>%h?%h@%hA%hB%hC%hD%hE%hF%hGp%hH`%hIP%hJ@%hK0%hL %zhM%rhN%jhO%bhP%ZhQ%RhR%JhS%BhT%:hU%2hV%*hWp%"hX`%hYP%hZ@% h[0%h\ %h]%h^%h_%h`%ha%hb%hc%hd%he%hf%hgp%hh`%hiP%hj@%hk0%hl %zhm%rhn%jho%bhp%Zhq%Rhr%Jhs%Bht%:hu%2hv%*hwp%"hx`%hyP%hz@% h{0%h| %h}%h~%h%h%h%h%h%h%h%h%hp%h`%hP%h@%h0%h %zh%rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%hP%h@% h0%h %h%h%h%h%h%h%h%h%h%h%hp%h`%hP%h@%h0%h %zh%rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%Rf%f%"f1/H:LH5DH811H|$H/A31@I,$tE1BLE1AH|$H/uE1AH|$H/tH|$H/uAI,$tE1LE1H|$H/uE1H|$H/tH|$H/u|rI,$tE1KBLE1V;BH|$H/uAE1#BH|$H/tH|$H/uBI,$tE1BLE1BH|$H/uE1BH|$H/tH|$H/uBI,$tE1CLE1CH|$H/uE1gCH|$H/tH|$H/ubGCXI,$tE11DLE1;E1H8+I,$DLE1H|$ H/uH|$H/ H|$ H/E1HHL$HL$LHI H5:E1H8/H|$ H/u:H|$H/tSE1I,$uLE1 uH|$ H/uE1HHL$gMHL$HH59E1H8I,$LE1wH|$ H/uwH|$H/cNH|$ H/jJE12=H0HL$jHL$HH5>9E1H8FI,$fLE1+H|$ H/uH|$H/7H|$ H/E1HHL$H|$ H/1HD$ZHD$HD$FHD$HUHH$HL$HyH5*H9HL$HH58H81V1JH|$ H/tXE1sI,$uLE1\<#H|$ H/u}H|$H/um#cE1HSHL$]HyH5)H9IHL$7HH5M7E1H8H|$H/uH<$H/t4E1H|$H/uE1HHL$HyH5@)H9HL$HVH56E1H8<+H|$H/uGH<$H/t4E10&H|$H/uE1HHL$IHyH5(H95THL$#HH55E1H8HHT$11uH\H551H8CHT$HLHt$ILuHH5`5H815Ht$HH5,5E1H:E1I,$uLE1HuH?E1I,$uLE1iH`H54E1H:F>HYHt$1HaHLuH H5V4H81Ht$pHHt$1'HEHLTuHH53H81Ht$1LHHD$HD$5LHD$~HD$QH|$(H/udH|$ H/GP11H|$(H/,51H|$(H/uH|$ H/t1I,$L1LHD$HD$LH52I:wCmCImbCLUCHmuHImtE1^ALx*CLE1hAALE1X1AI,$tE1DLE19DH|$H/u$E1CH|$H/tH|$H/uCLH51I:FFImFLFHmuHImtE1DLdFLE1{DLE1rkDLeWIL1H5b1I:*c;cHH5rE1H8E1 H1HH5H H8t)LOIL@EDPLDPLEH LHPH=U1t$H$t$P$t$X$t$`$t$h$t$p$t$xL$LD$xH$HT$pH$HHH=H5E1H?)vHHH5_E1H8HmH-HH `H5H9YopH>H5hH8'11H1H$:H`I,$ID$HtE1aI,$uLE1aLE1aLH5I81H H5H911Kc1DcHt$Ht$IMdcHt$Ht$IMFd2dHt$Ht$IMddATUSHGH (lIHu4H H;t8ku*H HsL yI $uLE1 H"L[]A\A{H ~H5/H9wHV2H UH56H9NHV2L ,H5͇I9%lLH5ׇI;lLH5I:lHLOl]A\A]-1HHLsI,$sLsLjH5I;cssHE1rLH|$AHrL t+H=H5E1H?cr4E1VrH 5H5&E1H98r sH H5H9sLsI,$sLsI|$HctI|$HYtI,$tE12I,$uLE1oLE1_ uUIVH .1E1H5HRH9u1AD[A~YA]LHIL9ut%vImLE1HuH=%sIH0uHx1$uLwL sH5I9lwE1cvLwvH=D$rIHt01HxHL$IT$1t$LuqtImtE1tE1u1E1utLE1etLwE1StI,$9wL,wLLI(tvBHL$[HL$„u7HL$t0HL$LAEgH=.?AE LKIm{LF{L9zL|$ LLT$ yE1yL%H5~I<$E1yL H5I9zzLE1MyL5H5I>ςLpH5I8i\RLr靂Le8L1H5bI;*΃`ăHH5}1H:~Hmt1~H1~I/'LImhL[HHmuH1}L|$,LLT$,}HwH5}H;`餁H1jf}I.3LS&H1D@}L7黂HD$HlHmH1}LYH+uH1|I,$tE1LE11R{H|$(H/{E1%HHL$-I,$QLE1kaH|$(H/uLH|$ H/tWH|$H/ -u+HH5IE1H:E1HL$^HL$5HH5E1H8I,$LE1H|$ H/uH|$H/tH|$ H/[E1cN8HAHL$H|$ H/u'H|$H/E1HL$HH5(E1H8TI,$uLE1=H|$ H/uE1HHL$OHL$HPH5E1H86&I,$?LE1; 1H|$ H/uH|$H/H|$ H/E1HHL$PHL$GHH5E1H8I,$LE1H|$ H/upH|$H/\H|$ H/CE1pH3HL$HL$HH5AE1H8I,$LE1sCH|$ H/uH|$H/n@H|$ H/UE1$HHL$aHL$HLH5E1H82=I,$VLE17"-H|$ H/uH|$H/H|$ H/E1HHL$LHL$cHH5E1H8H|$ H/uH|$H/sH|$ H/ZE1HJHL$HL$BHH5XE1H8I,$LE1H|$ H/uH|$H/H|$ H/E1kHHL$HE1%I,$uLE1mH<H5E1H:"H5dE1I,$uLE18HH5.E1H:cHE1.I,$uLE15HH5E1H:tHvE1I,$uLE1hJH7H5E1H:uH H5UE1H:3E1+I,$uLE1H\HH5E1H:H]E18HuH5E1H:[_Hn E1JH|$H/tLl$vLl$l=H3H|$H/uH|$H/uH|$HtH/tUE1 ImuLE1 H|$H/tH|$H/uLl$LHD$HD$%H|$(H/unH|$ H/u^I,$tx1H|$(H/u@H|$ H/u01H|$(H/t HD$ HD$(HLHD$HD$L׿1x˿XH|$H/u趿H|$H/t$E1TH|$H/t Ld$?艿肿.Ld$$HkxI,$uLE1TJH|$H/u5H|$H/t$E1H|$H/t Ld$Ld$HI,$uLE1ӾoH|$H/u达H|$H/t@E14Ld$*H虾I,$uLE1肾xnHaNH|$H/uLH|$H/tE14*I,$tE1VHLE19I,$tE1H[LE1ҽI,$tE1H趽LE1覽H=bIH;H|E16H=PH5uE1H?6HIHL@ LD$HD$u&LH5uI8E1NE1E19LH$Ht#H HD$PHμE1E1E1H$ͼL$'W1vHHD$膼HT$TvHPH5 H:91 HJHmHEt1HHD$"HD$LH|$AHaE1wHE1IwImxLѻxLĻxڻE1`wH=H5 H?|Ox費ExL腻8xImm|Lm`|MHmuHVI,$t*E1rzH?|H2XzE1PzLE1@zL |#{LE1zL H5I9踻{Im@L3MHmuH詺I,$t*E1E}H蒺H腺+}E1#}LE1m}L`~v~LE1F|L H5CI9 ~A骅HmuH (1SI.LxH=H5H?贺]L"HmuH賹餄L覹E钄M16Ht]#HHtdHL1II/HHmHI1L5邁I/s1E1鲄I/1霄HLuI/HPLMq1tHɸ1ظ隃LLH|$ALH+IM&1Hs预LfE1鎅tE1遅LD闅I|$HE1}I|$H>E1fL}E16E1RLٍH-H5H}赸齍鳍AyjC<頊A<CHD$ D$Ld$ HD$P1LL$0LD$8yZYuHl$(L5H}L9Ll$ HEMEI9HT$IEL9LDIH{HxHf@0HKfo XHx@IUHuLT$H@Hx@ H0MELD$ Hm#ImDs(D$ C,DH0L[]A\A]A^LQHUHHLSHHTLl$ MEM9IEHT$L9tHt$Hٿ{UNH='IHfoWLT$fML$HAD$0HKIUML$@HuI|$ID$AT$ A\$0Mu"LD$ ūHmHMZILL$ LIH|$H/u4H5L*Iut LHH=QIHHVHV1H5AH;)HmuHJE1YL:3H HR1E1H5H9(DL!mI8HAXMpMtW1IHtHH-H}t ]uPH H- ]uZH H}uLLäImfI,$3LE1rHuLѧyݵI SHuL賧y鿵HE>ff.AV1AUATUSHHH5vVH HL$HT$D$ 让^Hl$L%*H}L9Ll$HEMEI9IELyIHIt$HAD$0ffo TIt$@HKIUAD$ HuI|$ID$LD$ AL$0HmImDK(D$ C,DˀH L[]A\A]A^L芪HE@HHLSOHHLl$MEM9u"IEH= 舩IH H5LuIULHH=NIHuL\HODL!uI;PA[MsM1IHH-H}t{]uaH H=ɾHRH51H?蜩Hm9HE1趡H HPH51E1H9bkHuLy¼H-A ]u1H H}uLL脡ImɼI,$ּHuL蝤ynI HE:鄼ff.AT1UHHH5[SH8HL$ HT$(D$ 蓦HT$(Ht$HO`HT$ Ht$HOYH=EIHYHD$Ht$I|$HMLD$ HPHv0H|$H/t*H|$H/t&t$ HnDӻH8L]A\ff.fAV1AUATUSHHH5VRH HL$HT$D$ 莥$Hl$L% H}L9Ll$HEMEI9IELYIHŻIt$HAD$0ffo PIt$@HKIUAD$ HuI|$ID$LD$ AL$0聟HmImDK(D$ C,DˀH L[]A\A]A^LjHE@HHL3KHHLl$MEM9u"IEH=hIHϺH5LuIULHH=JIHuL<H/DL!;I;A[MsM1IHH-H}t{]uaH H=HRH51H?|HmHE1薝H rHPH5_1E1H9BkHuLѠy鈹H-! ]u1H H}uLLdImI,$|霹HuL}y4I HE:Jff.AV1AUATUSHHH56OH HL$HT$D$ nHl$L%H}L9Ll$HEMEI9IEL9IH"It$HAD$0ffo MIt$@HKIUAD$ HuI|$ID$LD$ AL$0HmImDK(D$ C,DˀH L[]A\A]A^LJHE@HHLHHHLl$MEM9u"IEH=HIH,H5LآuIULHH=GIHuLHDL!I;A[MsM1ݘIHH-H}t{]uaH H=HRH5v1H?\Hm\HE1vH RHPH5?1E1H9"kHuL豝yH- ]uIHqHD$Ht$I|$HMLD$ HPHvH|$H/t*H|$H/t&t$ H.=H8L]A\֘Ϙff.fAV1AUATUSHHH5KH HL$HT$D$ N1Hl$L%H}L9Ll$HEMEI9IELIHҵIt$HAD$0ffo IIt$@HKIUAD$ HuI|$ID$LD$ AL$0HmImDK(D$ C,DˀH L[]A\A]A^L*HE@HHLCHHLl$MEM9u"IEH=(IHܴH5L踞uIULHH=fCIHuLHDL!`I;;A[MsM1轔IHH-H}t{]uaH H=iHRH5V1H?kHl$L%H}L9Ll$HEMEI9IEL IH It$HAD$0ffo v?It$@HKIUAD$ HuI|$ID$LD$ AL$0葎HmImDK(D$ C,DˀH L[]A\A]A^LHEHHL9HHLl$MEM9u"IEH=IHH5L訔uIULHH=Vq9IHuLHߌDL!I;¬A[MsMt]1豊HHtNL-I}t A]uUI L-HA]I I}uHL膌HmI,$5LE15~IuH蔏yGH=HRH51H?ϓHmHE12H ŨHPH51E1H9蕓HEOIuH6ɫI 鄫ff.@AT1UHHH5=H8HL$ HT$(D$ HT$(Ht$HD:wHT$ Ht$H%:pH=V10IHpHD$Ht$I|$HMLD$ HPHvpH|$H/t*H|$H/t&t$ H.H8L]A\薊菊ff.fAV1AUATUSHHH5<H HL$HT$D$ 0Hl$L%H}L9Ll$HEMEI9IELِIHѪIt$HAD$0ffo F;It$@HKIUAD$ HuI|$ID$LD$ AL$0衋HmImDK(D$ C,DˀH L[]A\A]A^LHEAHHL5HHLl$MEM9u"IEH=mIH۩H5PLxuIULHH=&A5IHuL輈H诈DLP!_I;:A[ MsM1}HHL-JI}t|A]uaI H=(HRH51H?Hm HE1H HPH51E1H9jIuHPyɨL- A]uI9tHEL}LHM]L߉D$L\$3Ht$HT$($LD$$|D$AA8H;=.K(AL$,H=2LL+HHHH9ILEHEILH<$LLD$舂L $D$IqHHt$oHt$H|$HT$($x}I/WHD$R{D$BAAfYOAA@ $ L$tt$(L>t1(DCAw߃HHH5yDI}H5H9 #H5LL|{xH59LyIHmLHH=&I/IML$AH}H|$=H<$VH5LD$,jyHIH$LLH==X&I/IH$MH|$HD$πLT$HH$H=LT$HT$HILHT$H4$MOLIULLL$LFHFLD$LD$,LHt$Lt$L\$Iw ImuLLt$L\$ yL\$Lt$H<$Lt$L\$c|$,H|$LD$HH9L9!LI!L1HwHSL:f.B*f. <*z`u^zIHAL$,H=LH(I/HcLH$+xH<$NH{HGL۔IL+ʒIHH(yԝ][{ff.@AVH AUATUHHHSHuHXL-ޔHD$D$ Ll$ Ll$P1LL$(LD$vZYLd$M9VLt$ H=پ1LzLd$ MLd$I,$@AoL$H|$)L$ AoT$ )T$0Ao\$0)\$@L9H}H,H9Ll$HEMEI9qIEL}IHLHH@0fIULH@HuHxLfo%'@ LD$H@`0R{HmImuLHvLt$T$Av(A V,HPL[]A\A]A^H5c}LUAfLHH=7R"Ld$HH`Ll$MEI9uxIEH=|IHIT$HfHuLIT$@I|$IUfo5&ID$LD$AD$0Al$ At$0KzHmH5L|qM]ALLH=e!IHFI|$H5Lt$ H9aIt$ LH|$L9t OƅxPL|Ld$H}HH9~HEH-oIRH5\1H}A|E1?HJISH57H81|Hmuz!L-ǛI}A]MuMt[1rIHtLH- ]uYH H}uH- ]H H}uLLsImeI,$8LE1soHuLvy͚z5HXH5E1H:>t/I #HuLvg通HD$IHH(29Ld$pHAG,Hff.fHH=HfHG1DUHH@HH/urH}HHwH/mtrHEH]H@UHH{HEH]H@fAVAUATUHSHDo,16pH)H=ŭIt>HH H;t$DktHsLTuH H;u1Du(oIHH=ct?HZH H;t$DstHsLtÜH H;uHcU4Hߎ}8DEPH HuAU1HULMATWH=#APLE uI $H HqI4$H1Imt H[]A\A]A^5DHcPsSHHsHHwCP1[HH5$H8q[fHYATH9iwIHH=ַ1_uID$@H_H=1CuID$HH[HHtPoBM\$@It$,AD$oJ AL$ oR0IT$(AT$0ISHpAD$PID$XLA\I|$H5! MD$@ML$(MT$,MHLPAD$PID$X10IHH=1ytID$@HyH=Զ1]tID$HHuH5HfI|$H df.HH=ZH;5H=?H;5H=$H;5H= H;5H=H;5H=H;5H=HH H8H;pu@@HOu2HkHHfHIH٩HyHHH٩HH|@H)lH|$*t-H|$HWuHˊH[fSHHHPpHHHH9HGH{t1tH[H=,H5#H?nSHHHoHHH{tt1H[H׉H5"H8mSHHHoHHtH{tt!1H[Ht$8qHt$Ht׃HrH5"H8cmff.SHHH oHHH{rt1H[HH5x"H8mATIUHHHFtVH5ÿHGqt+H5H4qu0ID$HHH]A\ID$@HH]A\HHL]A\off.HHmHlHHHHff.fHHcnHHcmHHstHHmHHsHHgmHHclHHGmUSHHH=yHHiH95~H=xNH;5H=}3H;5H=H;5H=H;5H=H;5H=HfH H8H;pu@XoHU uQ 1H[]@HɥHYHiHy1!ˉfDHl@H\H|$oH|$OeH= H5VH?iGfAWAVAUATUHHHSHXL%:HD$Ld$HLd$@Ld$8Ld$0Ld$(Ld$ Ld$Ld$P1HT$ RHHL$0QH H\$@SLD$PAPLL$`AQLL$pLD$x5gH0H|$HL9&kHHX LuLng H\$@L9cHsH5H9H;H;H;H;H;H;H;6HmAŅH5HmQH5HrmnH5{H[mtcH5pHHm*AL=3K4HE$m IIuLH5I:gALuf.DL%oH|$8L9[iHHLn H|$0L9XZiHHLun^H|$(L9N*iHHH|$ EPL9kiHHAIøI9LlLl$M9lIU-LlHD$H3E1E1HzLL_nH; H;vH=pH9{H=uH9H=zH9H=H;H=H;H=kH5|f.H H>JH;Fu@FA IL;t$EALuDLddL|$M9MMgA$LjIHE1E1LLlH;H9H= H;H=H;H=mH9!#H=RH9&8H= 7H9+=H=%H=fDH H?H;Gu@GIA M9ALuDLc'1HX[]A\A]A^A_DH=ٞH5ɞ,@H=ٞ|@H5ɞ @H=ٞ\@H5ɞ@H=ٞ<@H5ɞ@H5ٞ@H=ɞ @H5ٞ@H=ɞH|$0L9t#%eHHH}?j(H|$(L9tdHHEPH|$ L9t=dHHALuHL9LhLl$M9t>MMALLugHD$H1LaUL|$M9>I_rLgIHHE1[APALuAA6ALu'AALu AAAE1wH|$8L9RcHHH}h/L|}H5I8maAAH\$@L9tH{=H5HH9tzH;DH;?-H;:(H;5H;0tcH;/txH;.t`HeAŅIwdHu'H%E1LuXdHHcoALuALuALudHuHU|H5H:F`cHuHLu]SH|H5H8`H {H5 H9_cH8HH}&edL={H5I?_|LHxded ff.AUATUHtSHFIHIeH5 HctUH5Hzct2LHL]A\A]ceH{H5H:^]A\A]]LLA\A]v]LLA\A]$w@AVAULoATLAUSHH@D$c_eHHxHT$Lt$ HHsHLLDd$4\S(D$ C,ӀMH|$H@1D$HD$GeIHTH\IHLl$HxJLaLzLAM~ C|MNt?Mt$HBeuHfH@L[]A\A]A^HcuIMt$M!H52H>Ԍ^t2LvMtt1hZIHteL-9I}t'A]u I H IuL_yjL-I}t A]u,I LL&\I,$-HE1@e%IuL?_yMG( w,€u1!AUH=MATUSQH?_LoMtW1}YIHtHH-N ]uGH H}uH- ]uLH H}uLLX[I,$TZ[]A\A]HuLt^y?H bHuLV^y!ff.fHHH9u7aHt(HPHfo @0fH@HP@@ H0H10Huf.AUIATUHL(cIHt$@ @I|$0LH\^L]A\A]AW1AVAUATIHH5USH(HD$HT$_Lt$MhI~H-H9QH>aAI~HAF Y T@CM~0MvMnLbHHEM@EtE^A~sDtH|HL9uH=_D$_IH؋L@H@0fHxH@fo6 IT$HL@@HL$P X0XZEt$(D$A D$,DlHbH(L[]A\A]A^A_EH=ǚD$:_IHM}HAE0fHfo M}@HL$IT$IEI}AE AM0YEt$(D$A D$,DHia`u8H5tH9xLLL]IHtHLH3iIHMH jImIM.H=D$IHHxLHL$IT$Xt$LdHL`{HD$I\$*IHIVHhH1HXAvME@HI0IE0XIE H^HT$HHYt$L~I~n^L~Mt[1TIHtLL5ؐI>t A^uTI L5A^I I>uLLUI,$ImzLE1UIvLXy錈PIvIA@H|$WH\ZYHڹnH LRSAF IvLXHLH@H1IH@09WIE H9]FImBLE1TADWY„uxDZ 0H|DHL95WLhE17CGDKA~wIA]LIIM9uM~HM~HD H|H p9fvDLD$XLD$AEu8LD$[YQ0LD$LAEuHxp8AAE LXɆAWAVAUATUSHHHFD$ [Ll$IHHLYHI9_L ZIHfIL$HMt$fo yID$AD$0AD$ AL$0HSIL$@H1HDCLL|$ ID$0MD$H ULID$ [LLLUT$ A]](ց u,؉t$ HHL[]A\A]A^A_HLSMH|$A@LWLYXZT$ AtHھ/ID$HL1ID$0GTLID$ FZL1A$0IH鰅!LmI;A[MsMtW1OIHtHL=q A_uII I?uH-8 ]uOH H}uLL{QImI,$kIwLTy„I ^HuLvTy餄ff.fAVL57AUATAUHSHHHzL9uH+AHEHD[]A\A]A^LHL$ XAŅuHEtHT$HLE1HHAEtH ImHP1H54H9XHmHHzAWAVIAUATIUHSHhH~D$(H;=lH{Uf. f(1ҸfT fV f.Df.$fT f. HIHa1HՖImHgLWOH7L}H} 1IHHQImHD$nHބIwHXD$,H\$XLl$0L1UH=*I92UHHfo-fC0LsHHCC k0IWLs@LsH1HAOHC0LL|$,HKHPHC LVLLLZQT$,A{EL$(AAE D$,DDD$,DHm}HM7VIH&VHHɃLTH|$(LHH|$LMHL$LHHt$VLD$LLHLLD$ESAt$(D$(A D$,LD$LLLLDULVHVD$(A D$,Ed$(D4$LRH+l$Hk HhH[]A\A]A^A_DHIMHD$4A@LLP4TXZT$,AEL$(AAE D$,EDD$,AE}HmuHwLTIHmTHHTLRL\$(LLLپL\$KHL$LHHt$ ULD$HLLLLD$QAt$(D$(A D$,LD$LLLLSL'UHUD$(A D$,Ed$(DA4$LArQL+l$Lk @HھHCHL1HC0MHC LSaO$HHIH1HqI/HuLJHL}H} 1?IHHMImHD$H|$}LT$M_D$,ILT$ALl$0LPHÌI9L2QHHH5fQHOf./f(E1fT%fV%Af.AEDf.D $zafTf.LHH4$H{!RLI1LA0H,LHHxH{1QcA!H=E~H?}Do2LgMt_18GIHtPL5 EnI I>uH-̄DmH H}uLL II/V}H+}M~!L hA(}I9}EiMQL$Mtc1FIHtTL%eEl$I I<$uL%&El$nI I<$uH<$LbHI.|LQHxQH+|}E!H5Eǀ|H>|D~LvMt_1EIHtPL% E|$uOI I<$uL%uE|$I I<$uLLGIm8}H+||It$LJyh|It$LJ|IvLJ|H #L~HH I HHuLXJ{It$L>J}\|It$L$J{z^ff.HH=1HT$I|HD$HtH-aff.ATIUHHHH(HHH=nHbHI9uH]A\H_1HL1 KHmuHHD$EHD$ff.@AV1AUIATUSH@H=8Lt$LHLd$MI,$ID$LvK\MHHAoD$LHLH\$)D$AoL$ H)L$ AoT$0)T$0D$4+DAT$(D$A D$,рIH|$H@1D$HD$LHHˆHI0DIHLl$HxHLHL$bLAH~KETLKEt)I\$HLuBHMH@L[]A\A]A^MMt C|MNtMt$HLtDHpKuIMt$LGH`H5TE1H8D!H5~,H>^LvMt_1AIHtPL%~ A\$uoI I<$uL%FA\$yI I<$uLLCImHE1LH-a`H5RE1H}CIt$L|FyH 7]IHH(ID$LHKHHH\$HT$ LIt$HHLD$4AAT$(D$A D$,рH|$IH@1D$HD$`JIHtaHAIH Ll$HxJL:FH_LMIt$LSEr؅AVAUI1ATUHSHH=EHT$D$DnH\$HH+ByEL%[I$HmotYHHIH(GH}L%ӀL9HEL%9[I$DAVAUI1ATUHSHH=ŅHT$D$cAH\$HH+iH}L%HL9MEHEI9\IELDIH HpH@0fHKHp@foIUHuP HxLD$H@X0EHmNIm6{(D$ C,EHL[]A\A]A^H5D7HE0HHH=c~HH(MEM9uxIEMH=:CIHINHAF0ffo $IN@IT$HKIFHuI~AF LD$AN0DHmtiMM H5~LCqIUHLH=~IHJL.y鐀I ^HuL>yrL%XI$Hm需UHHvH(tH}L%S}L9HEL%WI$"3DAWAVAULoATLUSHXD$@Ld$ H=*1L=āH\$ HH+H=|4AHHNHPH@0fLxHP@LHT$LfoH@P X0 8LlALu HE LD$?+BIHocLD$LHLLLD$)d$ ok )l$0os0)t$@D$D8DK(D$ C,DʀrD$LD$H|$HD$L@1kAHHoH8IHwL|$HxHLA=LVLAH~AtL[I\$LaAL1BHmHL8H?HL1H) ;HH 3;IHHUHHH+IIm~M~LLM/;HHPHLI,$IL8HLI/HudL7H+H M1HL@HmHg~I.XHXH[]A\A]A^A_@H+%MA~H8~HL1J@HHm I.u~L>gHLI\$@HmuH!7LH?HL1H)l9HHd} 9IHS~H+THHO~H+I}Imc }f.2~I,$I }L6M[}!9HH^}HL1C?I/HHm|I.|LM1=E1HE LD$ <S>IH:}LLd$Hs HT$ HLLD$D4DK(D$ C,DˀD$H|$MHD$8LZ9u*LRH51I:N6Ha5L5RH5N1I;$6L9 HRH5H:5HmuH 51UA!DL pzI9zAYMyMt^12IHtOL%o A\$urI I<$uL%opA\$I I<$uLL4I.|L=LL]4Ht HmzMIt$L7y$zHNQH5?H84I It$Ld7ZyNHHH(Q{H=v:HHHEHE0fL}HE@HT$LLfo HEE M0h1tL:9Lu 3:yzyff.AT1USHHH=zHT$b6zLd$MtQI,$zAt$PH{2HHzHH=10HsPHIHL[]A\MIHtH(\zAt$PH{J2HH5zHH=1]0HIHPff.AU1ATUHHH=yLl$L~5zLd$MI,$zAT$PLHu5IHyHHl$:IH@ L y@yI|$0H5HWOH|$HL]A\A]nLIHtH(vyAT$PLHu 5IHLyHHl$-:IHt$@ L y@yI|$0Ha5H NH|$nff.ATLgUHLQ4u6HHHxH-:HmIuH0LZ]A\L7uL/9u,H=7HHsMH5E1H8a1H=S7Hff.AW1H 5uAVAUATUSHxHMH<$LL$0HLD$8HHH\$0HD$8.Hl$0H9.H}H5pH9DyLd$8MxI|$L- rL9L?7I|$HAD$ AAADt$ @eMD$ML$0LL$IxLD$8IHxHT$HLALL$HZA|A|LKA<:pA|$0A|$0@A<:&LI MMD3EA_Av~CHE $Mt$H9uAL4$D$,M9LT5IHwMD$HAD$0ffo MD$@Ll$@Mt$AD$ LH\$,ID$AL$04LHLL/T$,AAADT$,](D U,؀DQLS7HxL[]A\A]A^A_ÐH=Yu1HT$@0.wHl$@HHl$0HmwfH<$LHIHt||$D$Ay}L%JAuL5 f A^urI I>uLHN*ImrI,$ZsLE1) HھLX*T$,IvLC-yrI :IvL%-zr|$qA0M|$I\$uKC|!w/LEEA8uLII9CsILL$-LL$̃|$fqAHt H=hH5hH)HH?HHHtHU?HtfD=uhu+UH=B?Ht H=E +dMh]wHHHHt$W*HD$HDHHHHHHHHATISQHt4HH3Hl*LM$tH CP*HCZ[A\B*ff.AT1UHHH5H8HL$ HT$(D$ 3&*HT$(Ht$Hd*HT$ Ht$HE~*H=vbQIH~*HD$Ht$I|$HMLD$ HPHv#H|$H/t*H|$H/t&t$ H)H8L]A\ff.fAT1UHHH5H8HL$ HT$(D$ 3%HT$(Ht$HdHT$ Ht$HE5+H=vaQIH9+HD$Ht$I|$HL$ HPHv#H|$H/t*H|$H/t&t$ H+H8L]A\E1ff.ATH~IH5`H93+I$LA\ff.UHHSHHHt$b+HD$HsHxxH|$HH/tH%H[]@ATHHUHHHt$D$c+H=*`IH@+HD$I|$HL$HUHp&H|$H/?+t$H+HL]A\ff.@ATHHUHHHt$D$Y+H=_eIH*HD$I|$HL$HUHpH|$H/*t$H2*HL]A\ff.@ATHHUHHHt$D$*H=^IH|*HD$I|$HT$HpQH|$H/tt$HX*HL]A\BATSHH=^HD$ RIHtHT$ HsHxD$ $*HL[A\fATHHUHHHt$D$*H= ^IH)HD$I|$HT$Hp$H|$H/tt$H躿)HL]A\bATSHH=]HD$ rIHtHT$ HsHxX$D$ )HL[A\fUHHHH Ht$)H|$H5H|$H/m)H ]fSH~HH5]H9Z)H{s)H7H[f.QHVZ)H7HZÐH(HHHt$W;)HD$Hx!uHF7HH|$H/)H(Hg7HߐQHV!)HG7HZÐH(HHHt$(HD$Hx uH6HH|$H/(H(H6HߐQHf t H6HZH~6HZH(HHHt$Gq(HD$HxQuH66HH|$H/L(H(HW6HߐQHt H;6HZH5HZH(HHHt$'HD$HxuH5HH|$H/'H(H5HߐQHV'H5HZÐH(HHHt$7'HD$HxuH&5HH|$H/'H(HG5HߐQHq'H'5HZÐH(HHHt$R'HD$HxuH4HH|$H/-'H(H4HߐQH'H4HZÐH(HHHt$7&HD$HxtHf4HH|$H/&H(H4HߐQHu H3HZH4HZSHHHH Ht$&HD$HsHxu H3HH|$H/T&H [H3HSHHHH Ht$3/&HD$HsHxYt H^3HH|$H/&H [H2HAT1IH OSHHHdeH8H2LL$LD$(D$ H\$=HL$H9HD$HHHL$HrH0H'Ht$ LJHL$HT$(Ht$)>'H=ZW5IH&H|$LD$ HL$HWIpHxHILD$ @H|$ H/&H|$H/ut$ H|$z&H8L[A\E1HyH50UH9&&fAT1IH rNSHHHdH8H1LL$LD$(D$ H\$HL$H9HD$HHHL$HrH0H&Ht$ LHL$HT$(Ht$4&H=UոIHJ&H|$LD$ HL$HWIpHxHILD$ H|$ H/%H|$H/uQt$ H|$胷u H8L[A\I,$uL%E1HyH5SH9U%AT1IH LSHHHbH8H!0LL$LD$(D$ H\$mHL$H9HD$HHHL$HrH0H%Ht$ LzHL$HT$(Ht$Y%H=TeIHX%H|$LD$ HL$HWIpHxHILD$ H|$ H/%H|$H/ut$ H|$$H8L[A\HyH5eRH90$E1fAT1IH bKSHHH4aH8H.LL$LD$(D$ H\$ &%HL$H9HD$H%HHL$HrH0H.%Ht$ L$HL$HT$(Ht$$H=*SIH$H|$LD$ HL$HWIpHxHILD$ `H|$ H/$H|$H/ut$ H|$賴D$H8L[A\HyH5QH9#+AT1IH ISHHH_H8Ha-LL$LD$(D$ H\$HL$H9RHD$HHHL$HrH0H$Ht$ L躾HL$HT$(Ht$虾#$H=Q襴IH#H|$LD$ HL$HWIpHxHILD$ H|$ H/#H|$H/t!t$ H|$Xn#H8L[A\HyH5OH9.#E1AT1IH bHSHHHt^H8H,LL$LD$(D$ H\$M HL$H9HD$HHHL$HrH0H#Ht$ LZHL$HT$(Ht$9o#H=jPEIH.#H|$LD$ HL$HWIpHxHILD$ H|$ H/;#H|$H/t!t$ H|$"H8L[A\ HyH5CNH9._"E1AT1IH FSHHH]H8H*LL$LD$(H\$ "HL$H9#HD$H"HHQHL$HH"Ht$ L"HL$HT$(Ht$O"Ht$H|$ HvHn"H*HH|$ H/@"H|$H/"H8[A\fAT1IH ESHHH\H8H)LL$LD$(D$ H\$ e"HL$H9"HD$HD"HHL$HrH0H"Ht$ L"HL$HT$(Ht$ɺ!H=MհIH "H|$LD$ HL$ HWIpHxyH|$ H/!H|$H/!t$ H|$药!H8L[A\f.AT1IH RDSHHHZH(HQ(LL$LD$H\$ "HL$H9D"JHD$H!HHL$HrH0H"Ht$L貹!HL$HT$H蓹!H=L蟯IH^!H|$H $HwHQHx H|$H/a!H<$H/I!H(L[A\ÐAT1IH "CSHHHYH(HA'LL$LD$H\$!HL$H9!:HD$H!HHL$HrH0H!Ht$L袸M!HL$HT$H胸J!H=K菮IH H|$H $HwHQHxi H|$H/ H<$H/ H(L[A\ÐAT1H BSHHHHXHL%1&LD$Ld$;!HT$L9tSHzH5mIH90!RPHsH HH !H<$ H )&H<$HHH[A\HD$H H(HT$ 띐U1H 6ASHHHHWHH-r%LD$Hl$tbHt$H9t0H~LHL9 H{H, HH[]HHD$HtHHt$HQHHua 1͐AT1H @SHHHHEWHL%$LD$D$Ld$" HD$L9uqHD$Hi H(~ H=IgIHG Ht$HxHL$HVHs t$H|$B HL[A\HxH5GH9fAT1H ?SHHHHeVHL%#LD$D$Ld$BHD$L9thHxH5%GH9H=H萫IHHt$HxHL$HVHsIt$H|$kHL[A\胿HD$HZH(CfU1H >SHHHHUHH-#LD$Hl$kdHt$H9t;H~LNFL9]HH{8H"HH[]پHD$H HHt$HQHH묐U1H =SHHHHTHH-b"LD$Hl$Ht$H9t;H~LEL9 HH{( H!HH[])HD$HHHt$HQHH묐USHH"HHsHH1H=THmH[]ff.@AU1ATUHHH5H@HL$0HT$8D$ HT$8Ht$(HHT$0Ht$ HH=FIH?H=EרIHmHD$ HT$(I|$IuLL$LEHHHR2H|$(H/ubH|$ H/uRt$H膧u81LH=RLImI,$H@]A\A]1ImuLI,$uL1ATHHUHHHt$D$ɱ$H=DէIH$HD$I|$HL$HUHp}H|$H/$t$H袦y$HL]A\ff.@ATHHUHHHt$D$)f$H=ZD5IHC$HD$I|$HL$HUHpH|$H/B$t$H$HL]A\ff.@ATHHUHHHt$D$艰$H=C蕦IH#HD$I|$HL$HUHpH|$H/#t$Hb#HL]A\ff.@ATHHUHHHt$D$#H=CIH#HD$I|$HL$HUHp- H|$H/~#t$H¤S#HL]A\ff.@ATHHUHHHt$D$I@#H=zBUIH#HD$I|$HL$HUHp H|$H/#t$H""HL]A\ff.@ATHHUHHHt$D$詮"H=A赤IH"HD$I|$HL$HUHp}H|$H/"t$H肣"HL]A\ff.@ATHHUHHHt$D$ |"H=:AIHY"HD$I|$HL$HUHpH|$H/X"t$H-"HL]A\ff.@ATHHUHHHt$D$i"H=@uIH!HD$I|$HL$HUHpH|$H/!t$HB!HL]A\ff.@ATHHUHHHt$D$ɬ!H=?բIH!HD$I|$HL$HUHp-H|$H/!t$H袡i!HL]A\ff.@ATHHUHHHt$D$)V!H=Z?5IH3!HD$I|$HL$HUHpH|$H/2!t$H!HL]A\ff.@ATHHUHHHt$D$艫 H=>蕡IH HD$I|$HL$HUHpH|$H/ t$Hb HL]A\ff.@ATH=G>UQ IHt4H@@Il$1HH ID$0HID$ LZ]A\ff.ff.UHHH H(H HH]鋝ff.UHH賴Hc H(H^ HH]Kff.UHHsHB H(H= HH] ff.USHHRHGHh t HS8HlXH[]UHHz HHHmuHD$mD$f.{Hf] UHoHC1u HH]|ff.ATHUHHH=M<HD$ 輩H!HuHxIHT$ t$ H!HL]A\ff.@PHH5HH8iZfAWAVAUATUSQH5H F$H=PHqHLL LH>HH-'HMHLE1H=HgH@H HL%YH5HM\$`HH`HMkMM{(HY@L-@@L51@L="@H@H?Hu I$H5yHH?HQ HH=:H;H9HW8H6 H=8 H=5H=7H=KIHH=0;HH5G)r"H=r9LH5G T"I,$<"H=G\HHgH5GHIH!HH 91HGH5jGvH!H(!H5TGHH>HY!Hm!I,$!H=(GIHHLG1H %GH+GH5)GH>IHH=JIHc H5=HHH5FI,$& H=F)IH H5FHHHH=cI1H 3HFH5FHU=IHImI,$H+kH=2hIHH8H5UEHH7H?6H5KLH-6H<H5ELHH=O1H7H=E6H<IHhHHH5EL= H<<IH-L=0AAH5i<1IMI1LIIHI,$IILHML-;LcۃI IOTtnEAt<=A@GH h0H01H5s0I4H0H5X01IH}/L=.H.M/MAH5W/1]IMI1LcIGIHI,$IWI7LHeI L IH5:1IXL KL%B1I$I`1H=3H:IH4HHH5eCLHH5VCLH1H= 3KH9IHHLH"H HfoH@ H5BH@(KHH0Hh8@P@5B1H=2H9IHWHfo {H5BH!H@ LHP0HH@(Hh8@PHH-,LeMt2H}IHHuHLHH8L+MTHH-8L{@H;;HEIHHH3HL)6HHL9uHAH5AL H5ALHxZL[]A\A]A^A_H G(Hff.fPHZff.AWAVAUATLgUSHLHCHHLIHHcHcHH=H|DHDIM>H}w1HHfH=6E1LHL1HILImHt H+*Mt I,$ HH[]A\A]A^A_HEH`HIH1LHHHyH|$HHE1L;t$}$C70HcuHxJDIH=6E1LHL1HILH52 L H{ IH=LKIH1H=41HHfATHUHHl$HHHMHHHHmIuHHL]A\ff.IHLfHOHHtHtHPHHY1ZDAWAVAUATUSHH(HH{HGHAHEHk(D$HM-T$HGHE1HD$HH5 H{ HH6HHHDLpHL IHHHL$L1HLcEM9O< E1HuIIJ|LWAHH qEu 0IAGII9|A|$u)AELL$I1LHHmH(L[]A\A]A^A_H5HtTH5מHAŅH5%@HAŅuNH|$H5MWHD$wH|$H5%A-HD$MLH5џI8E1?|$A0ItHuH H|$H5HD$LH5I;sHmrLE1LQH5ҞE1I8?H3H5LH:$H=H5ĞE1H? b@UHHHtH/tH}Ht H/H]f.S1HH=*HtSPHxHs @0PP[ff.ATUHQH~H5>*H9H9-0t\H9-0tSH9-0tJHEH=0HHmIMI,$uL0HqHZ]A\H16HH@,뜐QHw1THtH(H&HZSHwH1!HtH(HCH[ATH ,yUSHHW,H$HxIS(yH ,LxH{8HcS4HK HsDKPHLCP1ATUWH=H H[]A\fPHZHMff.fPHZH-ff.fATUSHG HE1H-N# H uEH}tZHuHHHt#uD eH HHWH5AH:D[]A\H H5AH9ff.SHH.HHH9FY#ƃt[H{kA1E[ff.SH-HHH9F2ƃt[H{kA1E[ff.BUSQ{HVH;-Hu/HvHO9@ǃAD8UHxHZ[] tH?uHMHĀ HfAVAUATUHSHH= (HD$ ڊHLhLt$ IHsLLvt$ H躉HuLLt$ H藉HL[]A\A]A^ff.@ATH=g,1@H?@,H=,HIHHH(uLA\ÐATH +IHSHHu4HPHHD$D$H\$P1LL$@LD$HGZYhHL$H9#HD$HGHHqHL$H0HHt$(LRHL$HT$8Ht$ 1jHL$HT$0Ht$H=A&IHH|$LD$ LL$(LT$HOIPIqHxLL$ MBH|$(H/9H|$ H/t1H|$H/ut$ H|$趇HHL[A\^HyH5$H9H|$(H/{H|$ H/$E1AT1IH )SHHH2H8HALL$LD$(D$ H\$HL$H92HD$HHHL$HrH0HSHt$ L蚑HL$HT$(Ht$yH=$腇IHH|$LD$ HL$HWIpHxHILD$ H|$ H/H|$H/t!t$ H|$8=H8L[A\HyH5"H9.E1AT1IH "(SHHHT1H8HLL$LD$(D$ H\$-]HL$H9ҚHD$H<HHL$HrH0HHt$ L: HL$HT$(Ht$LH=J#%IHH|$LD$ HL$HWIpHxHILD$ H|$ H/H|$H/t$ H|$ԄH8L[A\HyH5&!H91XAT1IH &SHHH/H8HLL$LD$(D$ H\$HL$H9rHD$HHHL$HrH0HHt$ LڎHL$HT$(Ht$蹎H=!ńIH]H|$LD$ HL$HWIpHxHILD$ H|$ H/H|$H/uAt$ H|$sH8L[A\HyH5H90E1fAT1IH "%SHHH.H8H!LL$LD$(D$ H\$mHL$H9HD$HHHL$HrH0HAHt$ LzHL$HT$(Ht$YH= eIHH|$LD$ HL$HWIpHxHILD$ H|$ H/gH|$H/ut$ H|$&H8L[A\HyH5eH90E1fAT1IH #SHHH4-H8HLL$LD$(D$ H\$ HL$H9貖HD$HHHL$HrH0HHt$ LHL$HT$(Ht$6H=*IHH|$LD$ HL$HWIpHxHILD$ `H|$ H/H|$H/ut$ H|$賀rH8L[A\HyH5H90E1fAT1IH ""SHHH+H8HaLL$LD$(D$ H\$ HL$H9RHD$HHHL$HrH0HHt$ L躊HL$HT$(Ht$虊H=襀IHAH|$LD$ HL$HWIpHxHILD$ H|$ H/H|$H/t?t$ H|$XH8L[A\HyH5H95oE1AT1IH SHHHt*H8HLL$LD$(D$ H\$MHL$H9HD$HHHL$HrH0H Ht$ LZHL$HT$(Ht$9H=jEIHrH|$LD$ HL$HWIpHxHILD$ H|$ H/0H|$H/ut$ H|$}u H8L[A\I,$uLE1HyH55H9AT1IH SHHH)H8HLL$LD$(D$ H\$HL$H9肒HD$HHHL$HrH0HFHt$ LHL$HT$(Ht$ɇH=}IHH|$LD$ HL$HWIpHxHILD$ `H|$ H/lH|$H/uQt$ H|$|+H8L[A\HyH5H90E1fAT1H SHHHH'HL%1LD$D$Ld$CHD$L9uq+HD$H&H(H=|IHHt$HxHL$HVHst$H|${HL[A\HxH5H9tf.AT1H SHHHH&HL%QLD$D$Ld$HD$L9thHxH5H9H={IHHt$HxHL$HVHst$H|$z[HL[A\HD$H5H(fAT1H SHHHH%HL%qLD$D$Ld$1HD$L9thHxH5H92H=5{IHHt$HxHL$HVHst$H|$yHL[A\HD$HH(fAT1H SHHHH%HL%LD$D$Ld$HD$L9thHxH5H9H=U0zIHrHt$HxHL$HVHst$H|$ yIHL[A\#HD$H#H( fAT1H SHHHH%$HL%LD$D$Ld$=HD$L9uq諍HD$H H(5H=lGyIHHt$HxHL$HVHst$H|$"xHL[A\HxH5tH9fAT1H SHHHHE#HL%LD$D$Ld$"HD$L9tdHxH5H9kH=pxIHHt$HxHL$HVHst$H|$Kwu)HL[A\gHD$H@H(u(I,$*LE1fDAT1H SHHHHU"HL%LD$D$Ld$2HD$L9tdHxH5H9H=wIHHt$HxHL$HVHst$H|$[vu)HL[A\wHD$HH(uxI,$zLE1fDAVIAUIATIUH(HD$D$HH(HU1Ht$HL莀*1Ht$HLtL;%H=svIH HT$Ht$HMI}HD$HHHukLD$H|$H/H|$H/ut$HuH(L]A\A]A^1Ht$HL^LPILL$LH|$H/uvff.@AUIATIUH0D$ĉHH(H;1Ht$(HL<1Ht$ HL"H=S.uIHH=;uIH\HD$ HT$(I|$IuLL$LEHHHRqH|$(H/H|$ H/ut$Hsu41LH=/LImI,$bH0]A\A]ImuL?I,$L,1AUIATIUH D$ tHPH(H{1Ht$HL}W1Ht$HL}H=sIHHD$Ht$I|$HMLD$ HPHv=H|$H/H|$H/t!t$ HrH L]A\A]=ff.AUIATIUH D$ 脇HH(H 1Ht$HL|1Ht$HL|H=rIHmHD$Ht$I|$HMLD$ HPHvH|$H//H|$H/t!t$ HqzH L]A\A]Mff.AUIATIUH D$ 蔆HhH(Hm1Ht$HL |I1Ht$HL{t{H='rIH HD$Ht$I|$HMLD$ HPHv1H|$H/t,H|$H/t>t$ Hp H L]A\A]eH|$H/ Ld$HfDAUIATIUH D$ 蔅H H(H LHt$H1 {Ld$ty1Ht$HLzt~H=&qIHi HD$Ht$I|$HMLD$ HPHv H|$H/t(H|$H/t$t$ Hou1H L]A\A]haH|$H/ Ld$I,$ LE13뷐ATUSHHD$ 舄H H(H H=K &pIH HsHxHL$ HU$t$ Ho HL[]A\@ATUSHHD$ H H(H H= oIHx HsHxHL$ HUt$ HnG HL[]A\@ATUSHHD$ 舃HI H(HD H=K &oIH$ HsHxHL$ HUt$ Hn HL[]A\@AUIATIUSHXHD$D$ H H(H 1HT$H5L H|$Hu!HLlkIHXL[]A\A]HWHD$D$ fofo zHD$HHD$D$(L$8y HHt~H=# mIHtxHH?H9tHHHt$(I|$IuHMHT$ LD$ wt$ Hl:I,$uLE1a#H E1 fDAWAVAUATUHSHhH|$HD$(D$脁H H(H( 1HL$(HT$ HH5 H|$ HGdHt$KIH Ll$M~ 8SPL|$0LL Ņ<1Lt$(MHt$HH1HHHH A0LT$PH1LHHH, H$H|$LHL$HSHIH H1LHHHL$8Ht$1L/IMH<$%ML!MtH-+L$LUL$HhL[]A\A]A^A_M^A @H5GyLzIHtHIH HP HT$HH|$(H5yDH$HtHH$H5 H HD$PH|$(H5x IHt HlIHLp Lt$XILL=}H5xI?E1kE1H4$LLT$ILHL\$]L\$ImLL$>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. conjugate($self, /) -- Return self. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. ?B d d ?BO(nsnniiOO)F(i)TrueFalseInfsNaNexponent must be an integer%s%liargument must be a contextsignal keys cannot be deletedinvalid signal dict|OOOOOOOOcannot convert NaN to integerargument must be an integerargument must be int or floatformat arg must be strinvalid format stringdecimal_pointthousands_sepgroupinginvalid override dictDecimal('%s')-nanctxthirdvalid values for capitals are 0 or 1invalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERIC{:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}argument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_strinternal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)valid values for clamp are 0 or 1valid range for Emax is [0, MAX_EMAX]valid range for Emin is [MIN_EMIN, 0]valid range for prec is [1, MAX_PREC]argument must be a signal dictinternal error in context_setstatus_dictinternal error in context_settraps_dictvalid values for rounding are: [ROUND_CEILING, ROUND_FLOOR, ROUND_UP, ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_05UP]internal error in context_setroundinternal error in context_settraps_listinternal error in context_setstatus_listcontext attributes cannot be deletedcannot convert Infinity to integerargument must be a tuple or listoptional arg must be an integeroptional argument must be a dictformat specification exceeds internal limits of _decimalcannot convert NaN to integer ratiocannot convert Infinity to integer ratiocannot convert signaling NaN to floatinternal error in PyDec_ToIntegralExactinternal error in PyDec_ToIntegralValue??; uC PO pO@ wO O@ O P pPP\,QQQHRpRR$R|#SPS@WSSSTl%TYTwT8TTTT<Ul"U=U XU8hUhUUUU UUVHV}W()XhXfYZ(Zhf[\\ ]\7^^^(_\__7`U`aaapsbbCc`cdqd d`-ee $fP f f!fg|!g!*h!hh0"hl"h""i"`i #i\#i#j#Xj$j$$j$ k%(k<%Gk%k0&k&lH'm'm<(p(p(p)p)[q4*qh*q*q*r+ls+vsP,s|,s,s, t\-Gt-Ut-xt .t|.tx/(u 03uT0\u0u01u1v2"v2v3ȉ>`0? ??4@|@׍@ߍHA}A>D? ?@H@@@ \A "B#PB$ $T $h $| $ $ @% @&@'p''Tp())()** +L`+++$,P`,,, -- -L.| .../40/T/0p1<2|@457<`8|p9:;4?0?p@PAA,C!C!@D"DD"E" F"F"`G4#Hp#H#@I#IL$@Jt$PJ$J$J%KX%@K &K\'Kx'@L'`L'PUd(pU)U)W|* X +0X +pX8+[+\+@\,\d,],@],].^. ^/^400_h0_1`t3`5a5bT6 d6e6f7@hT7i7k7pl8mT8n8o8pp9PqT90r9 s9t:pu:v:w4;x|;y;z <0{p<{<0|<}l=>>ЂAzRx $7 FJ w?;*3$"DPC\h+D fzRx  (CTPLH(DEBDA u ABA zRx   B" LBS@ BA zRx @ QB(BCQP DBA zRx P B^(BCQP DBA `.B^(<BCQP DBA LB^(|BCQP DBA jB^(xBCQP DBA  B^(8BCQP DBA `B^(<HBCQP DBA B` |BS0 EA zRx 0 BD$BazRx  B+0BDN D@  DBBA zRx @$BC$~BGL@bDBzRx @ vB)0ȇBID G0  DBBA zRx 0$7B-(Dp\AGL0~ AAA zRx 0 B$tBGL0uDBzRx 0 A>$BGL0uDB\A>(4 BGL0m DBA A4$tpNBAN0vDBzRx 0 A(hBGL0m DBA 4qA4$ NBAN0vDBiAHGAR0rAzRx 0 7A6AtzRx  A:A]zRx @(_D0M A zRx 0@pA]@_D0M A x@(AY A L_D0M A ^@ (AY A L< (_D0M A )@l XA]@ L_D0M A t? |A]? p_D0M A ?$ A]D?P _D0M A ,? (AY A L hAR0F AA zRx 0 =? hAR0F AA X ?@, BDB A(A0QP  0D(A BBBA zRx P(>H \BIB A(A0ThcpRhA` 0D(A BBBA zRx `(>(, (^BMQP DBA zRx P M?( ,iBMQP DBA `?( \^BMQP DBA  @( |YBMQP DBA v@(H `BMQP DBA  @( `BMQP DBA `JA$ BMQPABA(6BMQPDB)B$D BMQ@DB B$!BMQ@DB %C(X"BJT0t DBA PCU("AJT0Q AAA  CE(<8#BJT0 DBA CW(|#BJT0 DBA  CW(x$AJT0` AAA | C\($AJT0` AAA  C\$<X%AAAG0uAA D0xl%XBDA Q`  ABBA zRx `$C@$BDB A(A0QP 0D(A BBBA %D(8BCQP DBA mD^@xBDB A(A0QP 0D(A BBBA PsD@tBDB A(A0QP 0D(A BBBA Dr((<BCQP DBA D^@hBDB A(A0QP 0D(A BBBA @Dr(đBCQP DBA $ E^(BCQP DBA d+E^(@DBCQP DBA IE^(BCQP DBA gE^@ĔBDB A(A0QP 0D(A BBBA mE@\!BDB A(A0QP 0D(A BBBA Er(p4BCQP DBA E^@!BDB A(A0QP 0D(A BBBA  Er@̝BDB A(A0QP 0D(A BBBA  Er@`dBBB H(D0G@ 0D(A BBBA zRx @(E$h!BGL0uDB@,F>$!BGL0uDB|.F>$T0"BGL0uDB0F>$"BGL0uDB2F>$"BGL0uDB04F>$\#BGL0uDBl6F>$D#BGL0uDB8F>$$$BGL0uDB:F>$$BGL0uDB $$BGL0uDB\>F>$4P%BGL0uDB@F>$pjFTBHA EAB$%TBHA EAB%%5AG _IzRx   FD CA ,%5AG _I\FD CA h%5AG _IED CA $%/AAH [DALBBB B(A0A8G5 8D0A(B BBBA $zRx ,GEl X,%YAD B EE {E"^CHСBBB G(A0D8F 8A0A(B BBBE $zRx ,EPHBIB A(J0K_RAE 0D(A BBBA zRx (E<$$A^$P$aBDQ0CDB(F$A\H$BBB B(A0A8A@ 8D0A(B BBBA zRx @(E,%Hx H`MACzRx  G%\`T,AJxLATPP;BBB A(D0D@HLPAXI`Q@\ 0A(A BBBA HAGv( H+BBB B(E0A8JP 8D0A(B BBBA zRx P(Gd>Aa A ZOG$,-dBID0NDB,,G&P>GGGMGDGDGDGDGDGDnX -l-;lNH0-LBBB B(A0A8G` 8D0A(B BBBA zRx `(G /6Ai E G 8 05As(T 00BAD u ABA zRx   G> t0(Af0G  x0(AfH G  !hfI A DF?D@!D0BMA JbDAAPG AABzRx $F: !(D  C o A p!F !hAJ @ AA zRx   eF# H"MAJ e AA XPF# "ĪbAJ a AA "MAJ e AA F#<"(BDG @ ABH M ABH DGB#/AJ4#/AJL#H#D^d#`DM|#hDM#pDM#xDM(#>EjBAA bAB(#TAAD0 AAE ,$H.BAA  ABA zRx  $E $.EAj A XD)$.EAj A X$D)h$, BBB B(A0J8DuHMMGGSA 8A0A(B BBBF $zRx ,MDtL%$BBA O BBE W EBA A HBE AHBzRx  $=D ABB(&-DAA G AAA zRx   C@x&ܵBBF G(A0Gp 0D(A BBBA zRx p(C8&p\IA A(C0z (F ABBA zRx 0$CJd'VK{ A ('4MBJA {BBC<',BBB A(D0N@l0D(A BBB`C6X(BDB B(N0A8D`s 8D0A(B BBBA hSpIhA`ZC\(BBB B(A0A8D 8D0A(B BBBD DXIA$zRx ,D@ )BIB D(D0G@[ 0D(A BBBA \d) BBE B(D0D8D 8D0A(B BBBF D[FAD)+OBL &QF*5D i A )@F48* +BNNhZpRhA`+ DBA zRx ` E(*d,`BMQP DBA xuF(*-XBMQP DBA F( +.^BMQP DBA WG(`+/^BMQP DBA 8G(+0^BMQP DBA x/H(+2`BMQP DBA H( ,$3iBMQP DBA I(`,T4^BMQP DBA 8 XI(,t5BJT0 DBA 4&IW(,6BJT0 DBA t&IW( -6BJT0 DBA &IW(`-T7BJT0 DBA & JW(-7BJT0 DBA 4' JW(-8BJT0 DBA t'7J@( .D9BJT0 DBA '7J@8`.9QBEE D(DP (D BBBA zRx P$J0.:HBED DP   ABBA zRx P$aJ08/;BED D@  DBBA  +J0/t<BED D@  DBBA h+!K0/=BED D@  DBBA +ZKe00=BED D@  DBBA +wKD,X0>|BAA G0i DABzRx 0$WK,,0>|BAA G0i DABh?K,,1>|BAA G0i DAB'K,8D10?jBED A(Dk (D ABBA zRx (JPL1,@EBBB B(A0D8D 8D0A(B BBBA ,J(2BDG0} ABA ,BK8\2CBBD D(DP (A ABBA zRx P$Jd28D@2BDE A(A0Dpa 0D(A BBBA l J@83{BBG A(D0D@ 0D(A BBBA (K@3D{BBG A(D0D@ 0D(A BBBA 4}KL3lBBB F(D0A8D 8D0A(B BBBE K0L4BCA G0l  DABA CM"040BBDA G0  DBBA /M6(48BEG { ABA ML5 BKB B(A0A8Dj 8D0A(B BBBB $zRx ,L85``KeWd\@d`kcxP@0``b `````a@`P`p#p.0(@=W0a\`10// . ,^+@*^@)'@(0'8p'`&`%P %h$y@# 0pgpkjpji h`i &Ph}`|a@ ajPa@P5fKfWz\{@kz @y@ 0x@ w@u`tpsrpPo@m`l@L< t9G@a}@a#}@D   <@Q0@|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4c c XLI8> &?7ZRtl @ @5`nDp. 0E`0#`@@UhOO@2`Q       5!|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|45|4f112425ea6a86376e44988feab56f965dc9dea.debugZj?n.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.dynamic.got.plt.data.bss.gnu_debuglink 88$o``$( 0pp 8o"%"%Eo&&PT0'0'<^B0c0cXhc nw4} pl p<p< (H(H6r@#     4T